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ABSTRACT 
 
Simulation of rainfall records is usually performed in hydrology by applying cluster
models, which have been proved to be able to satisfactorily fit the main statistics of 
rainfall data observed on a wide range of time scales. Among these, the Neyman-Scott 
rectangular pulses model is widely applied, both in its univariate and multivariate form.
The estimation of the model parameters is traditionally carried out by using the method 
of moments, due to the difficulties involved in the application of maximum likelihood
approaches. Recently, an approximated maximum likelihood estimator for univariate
cluster models has been proposed. It makes use of the Whittle's approximation of the 
Gaussian maximum likelihood function. This approach, which provides consistent and
normally distributed estimates, has been shown to satisfactorily perform when applied
to some rainfall data observed in Great Britain. We propose here an extension of this 
method for estimating seasonal Neyman-Scott models, whose parameters are allowed to 
vary with the season. The seasonal spectral density of the data is estimated by taking the
Fourier Transform of the correspondent seasonal sample autocorrelation function. The 
procedure has been tested by fitting synthetic hourly rainfall data. 
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1 Introduction 
Precipitation modelling is a central topic in stochastic hydrology. Annual 

and monthly precipitation depths can be described by using autoregressive 
moving average (ARMA) models. However, daily precipitation occurrences and 
amounts are quite difficult to model. The main difficulties stem from the 
intermittent property of precipitation. It is even more difficult to model the 
precipitation series at a finer temporal resolution, such as hours or minutes. 

In the latter years, point processes were widely used for the development of 
physically realistic intermittent rainfall models (see, for instance, Kavvas and 
Delleur, 1981; Waymire and Gupta, 1981; Smith and Karr, 1985; Rodriguez-
Iturbe, 1986; Entekhabi et al., 1989). Rodriguez-Iturbe et al. (1987, 1988) have 
shown that the cluster-based rectangular pulses models, and in particular 
Neyman-Scott models and Bartlett-Lewis models (see Cox and Isham, 1980, for 
a review) are capable of adequately represent the rainfall process over a wide 
range of temporal scales of aggregation. In these clustered models, the 
occurrences of storms origins are assumed to follow a Poisson process. A 
random number of cells is associated with each storm event. Natural candidates 
for the distribution of the number of cells are the geometric distribution and the 
Poisson distribution. Precipitation of each cell is represented by a rectangular 
pulse whose intensity and duration are assumed to be exponentially distributed. 
In the Neyman-Scott model the position of these cells is determined by a set of 
independent and identically distributed random variables, which define the 
position of the origins of the cells with respect to the storm origin. In the 
Bartlett-Lewis process the intervals between successive cells are independent 
and identically distributed. Usually these latter random variables, which specify 
the location of the origins of the single cells, are assumed to be exponentially 
distributed in both models. 

In the latter years these models have been widely considered by hydrologists 
for modelling the precipitation process. The Neyman-Scott model has been 
much more frequently applied and many modifications have been recently 
proposed in order to overcome some of its limitations (Cowpertwait, 1991, 
1995). 

The Neyman-Scott model today represents a powerful tool in many 
hydrological studies. It is typically used in Monte Carlo simulations, for 
generating records that preserve certain properties of the observed precipitation 
series, thus obtaining rainfall data which are different, but which are equally 
likely, with respect to the observed ones. 

These data can be used, for instance, for recognising the hydrological effects 
produced by the inherent variability of the climate. To this end, it is often 
desirable to assess hydrological scenarios for a number of weather sequences 
different from the observed one but equally likely. Moreover, generation of 
synthetic data can be useful in order to extend the sample size of the historical 
record available, thus allowing to better inspect the statistical properties of the 
extremes. Synthetic rainfall data are also often used as input to hydrological 
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models, in order to obtain synthetic river flows data. By varying the parameters 
of the rainfall and rainfall-runoff models accordingly one can retrieve 
indications about the effects on the river flows of changes in the climate or in 
the catchment characteristics, induced for instance by land-use change or 
anthropisation in general (e.g. Brath and Montanari, 1999). 

However, a major limitation to the use of the Neyman-Scott model stems in 
the lack of suitable parameter estimation schemes. Maximum likelihood 
estimators proposed in the past demand an extensive computational effort and 
generally are not suitable for practical application (Smith and Karr, 1985; 
Foufoula-Georgiou and Guttorp, 1986). Thus, parameter estimation was so far 
mainly performed using the method of moments. Accordingly, estimates of 
various combinations of first- and second-order statistics from historical 
precipitation time series are equated to their theoretical expressions, which are 
function of the model parameters. Least squares techniques are usually 
employed to minimise the differences between theoretical and computed values 
of the above statistics. This approach suffers from the disadvantage that the 
parameter estimates can vary greatly depending on the statistics which are used 
in the fitting procedure. 

Recently, these drawbacks were partially overcome by Chandler (1997), who 
proposed an approximate maximum likelihood technique for estimating the 
parameters of a wide class of point-process based rainfall models. His approach 
is based on the application of the Whittle’s (1953) approximation of the 
Gaussian maximum likelihood function and provides asymptotically consistent 
and normally distributed estimates for both Gaussian and non-Gaussian data. 
The parameter estimation is performed by numerically minimising an 
appropriate objective function, which is obtained by comparing the spectral 
density of the model and the periodogram of the data. However, such objective 
function is often characterised by the presence of many local minima. This is a 
common occurrence when dealing with point processes. In fact, widely separate 
regions of the parameter space can often give raise to similar objective function 
values, even when using other methods of parameter estimation (Onof and 
Weather, 1993). Therefore, Chandler (1997) proposed to run the minimisation 
algorithm with different starting values of the parameters, in order to increase 
the probability to find the absolute minimum of the objective function. 

In this paper, Chandler’s (1997) approach is used in order to estimate the 
parameters of seasonal models. In order to account for seasonality, the year is 
thus divided into periods (seasons), and maximum likelihood estimation is 
applied to each period. Homogeneity of the process in each season is assumed. 
Moreover, a powerful genetic algorithm, namely the SCE-UA routine proposed 
by Duan et al. (1992), is applied here in order to minimise the objective 
function. This approach performs the estimation by exploring the whole 
parameters space, thus providing a more efficient minimisation and avoiding to 
run the minimisation routine with different starting parameter values. 
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The procedure described here can be applied to a wide class of point 
processes. However, we will focus on the Neyman-Scott model, which is the 
most widely applied by the hydrological community. 

The proposed estimation method has been tested by fitting some synthetic 
rainfall series. The derived estimates have been compared with the analogous 
ones obtained by applying the method of moments. 

The next section of the paper describes the Neyman-Scott rectangular pulses 
model. The third section is devoted to the description of the maximum 
likelihood approach considered by Chandler (1997), while the fourth section 
describes the extension to this approach to the case of seasonal models. The 
fifth section describes the application of the estimators and the comparison with 
the method of moments. The last section reports some concluding remarks. 
 
2 OUTLINE OF THE NEYMAN-SCOTT MODEL 
 

The Neyman-Scott rectangular pulses rainfall model introduced by 
Rodriguez-Iturbe et al. (1987) is a particular form of stationary and clustered 
point process. Storm origins (shown in Figure 1 as black squares) occur 
according to a Poisson process with arrival rate λ, so that the time between 
adjacent storm origins is an exponential random variable with mean 1/λ. Each 
storm origin generates a random number C (C = 1, 2, 3, …) of rain cells. The 
number of rain cells associated with a certain storm is usually assumed to be a 
Poisson random variable with mean ν. The waiting time, after a storm origin, 
for the starting of a single rain cell (shown in Figure 1 as white circles) is an 
exponential random variable with parameter β. Each rain cell has a random 
duration and a random intensity, where the intensity is held constant throughout 
the cell duration. Both the intensity and the duration are assumed to be 
exponentially distributed with parameter x and η respectively. The total rainfall 
intensity at time t is the sum of the intensities of all active rain cells at that time. 
Figure 1 reports a sketch of the schematisation of the hyetograph operated by 
the model. 
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Figure 1 – Schematisation of the hyetograph operated by the Neyman-Scott model. 

Storm origins and cell origins are marked with black squares and white circles 
respectively. 



 5 

 
The Neyman-Scott model provides a continuous-time representation of the 

rainfall process. The resulting rainfall depths are often aggregated over assigned 
time steps. The model can be used for modelling rainfall data on a wide range of 
time scales, provided the time step between successive observations is fine 
enough in order the intermittence of the process to be preserved. 

The model structure is characterised by five parameters which are to be 
estimated by fitting historical rainfall data. As previously mentioned, model 
estimation was usually performed in the past by using the method of moments, 
which consists in equating estimates of various combinations of first- and 
second-order statistics from historical precipitation time series to their 
theoretical expressions, which are dependent on the model parameters. Least 
squares techniques are usually employed to minimise the differences between 
theoretical and computed values of the above statistics. 

In order to account for seasonality, the model parameters are usually 
estimated on a seasonal basis. Accordingly, the year is divided into periods 
(seasons) and stationarity of the process is assumed in each of them. The 
estimation procedure is then performed for each period and thus the model 
parameters can assume different values in different seasons. 

Further details on the Neyman-Scott model can be found in Rodriguez-Iturbe 
et al. (1987) and Burlando (1989). 
 
3 MAXIMUM LIKELIHOOD ESTIMATION FOR THE NEYMAN-

SCOTT RECTANGULAR PULSES MODEL 
 

We describe here the theoretical basis for an approximate maximum 
likelihood estimation procedure for the Neyman-Scott model. The interested 
reader is invited to refer to Chandler (1997) for more details. 

Let us denote with Xt a stochastic process of mean rainfall intensities over a 
time step ∆, at an assigned raingauge. The process Xt is assumed to be strictly 
stationary and not affected by long-memory or long-range dependence. This 
implies that the scale of fluctuation of the process is finite (Mesa and Poveda, 
1993) and that the second-order spectral density of the process exists and is 
finite.  

Let us now suppose that we are interested in estimating the parameters of a 
model, whose parameter vector is Θ = (θ1, θ2, …., θk). When the sample size N 
of the available time series is odd, and all frequencies except zero are included 
in the analysis, the Whittle’s approximate maximum likelihood estimation is 
carried out by minimising 
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The argument is essentially the same when N is even and when zero 

frequency is included, although the expression involved is more complicated. 
Here hX(ωj,Θ) is the spectral density of the model at the frequency ωj, which 
depends on the model parameters, I(ωj) is the periodogram of the data and m is 
the integer part of (N - 1)/2. Chandler (1997) shows that the estimation 
procedure obtained by minizing (1) can be regarded as a quasi-likelihood 
technique. It can be proved that, under mild conditions, the Whittle's estimator 
is consistent and normally distributed. The variance of the parameter estimates 
depends on the fourth order spectrum of the rainfall intensity process. However, 
computation of the confidence limits of the estimated parametes is not very 
useful when dealing with many of the models currently in use. Apart from the 
difficulty in obtaining the fourth-order spectrum, there are often problems 
because widely separated regions of the parameter space can lead to similar 
values of the objective function. This kind of problem arises also when dealing 
with other methods of parameter estimation (Rodriguez-Iturbe et al., 1988; 
Onof and Weather, 1993). 

The application of the Whittle's method has been extensively discussed in 
the literature, even for the case of non-Gaussian data affected by long-range 
dependence (see, for instance, Beran, 1994; Samorodnitsky and Taqqu, 1994). 
Further details about the computation of the spectral density of the model, the 
periodogram of the data and about the numerical minimisation of (1) are given 
here below. 
 
3.1 Computation of the spectral density of the model 
 

The spectral density of a generic parametric discrete time process, whose 
parameter  vector is Θ, is defined by 
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where cr(Θ) is the autocovariance function of the process at lag r. The above 
spectral density can also by expressed by (Chandler, 1997) 
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where g(ωj,Θ) is the theoretical spectral density of the underlying continuos 
time process. This result derives from the fact that the discretisation in time 
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steps of length ∆ is equivalent to first applying a uniform filter of width ∆ to the 
original process, then sampling the filtered process at intervals of length ∆. 

The form of the spectral density g(ωj,Θ) is known for a wide class of 
stochastic rainfall models based on point processes. For the Neyman-Scott 
model, described in Section 2, it can be written as 
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where η and σ are respectively the mean and the variance of the cell intensity 
distribution (which is exponential in the case of the Neyman-Scott process), 
φ(ωj,η) is the characteristic function of the cell duration distribution, ℜ(z) 
indicates the real part of the complex number z and gN(ωj) is the theoretical 
spectral density of the so-called driving-process, which is composed by the 
storm origin, the rain cells number and the cell starting time processes. When 
ωj = 0 it is necessary to apply a limiting operation to obtain the result. 

For the Neyman-Scott process, gN(ωj) is given by 
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where φ(ωj,β) is the characteristic function of the probability distribution of the 
waiting time, after a storm origin, for the starting time of the rain cells, E(α) is 
the expected value of the random variable α and C is the number of rain cells 
associated to each storm origin defined above. 
 
3.2 Computation of the periodogram of the data 

 
The spectral density hX(ωj,Θ) can be estimated by computing the 

periodogram of an observed time series which is a realisation of the investigated 
stochastic process Xt. The periodogram is defined as 

 

( ) ( )22

2 jj
BANI j ωω +=ω  0 [ ωj [ 0.5 , (6) 

 
where Aωj and Bωj are the sample Fourier coefficients for the frequency ωj.. 
When N is odd, they can be computed by 
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where ωj = 2π j/N∆, j = 1, 2, …. (N - 1)/2. When N is even, (7) and (8) apply for 
j = 1, 2, …. (N/2 - 1) but  
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Note that the highest frequency is 0.5 cycles per time interval because the 
smallest period is 2 intervals. 

The periodogram can be also computed by taking the Fourier cosine 
transform of the autocovariance function of the data, that is, 
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where M is the number of the autocovariance coefficients ck, k = 1, 2, …., M, 
significantly different from zero. For details about the practical choice of M see 
Kottegoda (1980). 
 
3.3 Numerical minimisation of the objective function 
 

The objective function given by (1) was minimised here by applying a 
genetic algorithm, namely the SCE-UA proposed by Duan et al. (1992), which 
was found to be the most effective among several global optimisation methods. 
 
4 APPLICATION OF THE ESTIMATOR TO SEASONAL DATA 
 

We mentioned in Section 3 that, when modelling rainfall data using point 
processes, seasonality of the rainfall process is usually accounted for by 
estimating the model parameters on a seasonal basis. Accordingly, the year is 
divided into periods (seasons) and stationarity of the process is assumed in each 
of them. The estimation procedure is then performed for each period and thus 
the model parameters can assume different values in different seasons. 

Application of the Whittle's estimator to seasonal data requires the 
computation of the periodogram for each season. This is complicated by the fact 
that the observed rainfall data are available in form of multiple realisations, one 
for each year, of the rainfall process related to the assigned season. 
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Two approaches are possible for computing the periodogram in this case. 
The first is to estimate the periodogram referred to the assigned season by 
averaging the yearly periodograms referred to the same season, which can be 
computed separately for each year of the observation period. When dealing with 
limited length seasons, this approach presents the weakness that the 
periodogram can be estimated only for a limited range of Fourier frequencies. 
The second possible approach, which was used here, is to compute the seasonal 
periodogram using (11). The seasonal autocovariance coefficient at lag i, 
referred to the whole data observed in the season k, which will be denoted here 
below as c'i,k, can be estimated by computing the averages of the corresponding 
values estimated for each year, that is, 
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where L is the number of years of data and c''i,k,p denotes the seasonal 
autocovariance coefficient at lag i, referred to the season k and year p. 

The choice of the value of M is quite important (see equation (11)). When 
dealing with hydrological time series, usually the large scale characteristics of 
the periodogram ordinates are provided by the low-lag autocovariance 
coefficients, while the high-lag ones provide more details about the small scale 
fluctuations. Thus, reducing M leads to obtain smoother periodograms. 
Therefore, on one hand, one would naturally tend to choose high Ms in order to 
obtain a better detail in the computation of the periodogram. On the other hand 
it should be noted that the periodogram is an inconsistent estimator of the 
spectral density and it needs to be smoothed in order to be useful (Priestley, 
1981). Moreover M, which in principle could be season dependent, cannot 
exceed the length of the corresponding season and the higher values of M are 
computed on a lower number of data and therefore are less reliable. Finally, it 
should be noted that, when dealing with rainfall data, the number of the 
significant autocovariance coefficients is usually small and therefore a good 
approximation in the periodogram computation can be obtained also using 
values of M which are relatively limited. 

Accordingly to the previous discussion, M was chosen here equal to 10. 
Higher values were found not to improve significantly the results when 
referring to the examined synthetic rainfall series. 

 
5 TESTING THE ESTIMATOR PERFORMANCES ON SYNTHETIC 

RAINFALL DATA 
 
The maximum likelihood estimator described above was tested by analysing 

synthetic rainfall series, generated using a Neyman-Scott model. 50 years of 
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synthetic hourly rainfall depths were generated by using the parameter values 
reported in Table 1. 

Neyman-Scott parameter estimation has been performed using the method of 
moments and the maximum likelihood estimator described above. In this latter 
case, the optimisation procedure has been started at a point in the parameter 
space different from the one representative of the true set of parameter values. 
The resulting parameter estimates have been compared with the respective true 
values, in order to assess the reliability of the Whittle's approach with respect to 
the traditional method of moments. The estimation procedure has been carried 
out by subdividing the year in 12 season, corresponding to the 12 calendar 
months. Therefore, the estimation has been carried out on seasonal basis, even if 
the data were generated by assuming the same parameter values in all the 
seasons. 

The method of moments was applied by optimising the fit of the mean, the 
variance, the proportion of dry days and the lag-one correlation of the hourly 
data in each season. 

When implementing the maximum likelihood approach, the infinite 
summation in (3) was limited to 20 terms, for k = ±1, ±2, …, ±10, since the 
spectral density becomes negligible at high frequencies. 
 
Neyman-Scott parameter λ 

(1/h) 
ν β 

(1/h) 
x 

(h/mm) 
η 

(1/h) 
Parameter values 0.01 5 0.3 0.2 3 
Table 1. Values of the parameter of the Neyman-Scott model used for the generation 

of the synthetic rainfall data. The dimension of each parameter is reported in parenthesis 
(the symbol h denotes hours) 

 
The results of the estimation are reported in Table 2, which shows the mean 

(over the 12 seasons) absolute relative errors of estimation Mre for each 
parameter. In Figure 2 is reported the index Re, which allows to compare the 
performances of the two estimation methods, which is given by 

 

l

m

Mre
Mre=Re ,   (12) 

 
where Mrem and Mrel are the mean relative errors of estimation for each 
Neyman-Scott parameter when using the method of moments and maximum 
likelihood respectively 
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Neyman-Scott parameter λ β  ν 

x η 

Μrem 0.005 1.53 3.87 0.13 2.15 
Μrel 0.018 2.98 1.62 0.07 0.61 

Table 2. Mean (over the 12 seasons) absolute percentage errors Μrem and Μrel of 
estimation for the Neyman-Scott parameters, by using the method of moments and 

maximum likelihood respectively. 
 

The results highlight a satisfactory reliability of the Whittle's method when 
compared with the traditional method of parameter estimation. In particular, 
maximum likelihood resulted much more precise in the estimation of the 
parameters ν, x and η, while the method of moments performed better in the 
estimation of λ and β. It can be observed that some of the resulting relative 
errors are quite high for both the estimation methods. This is a quite common 
occurrence when estimating the parameters of point process models. In fact, it 
was mentioned in Section 3 that often widely separated regions of the parameter 
space lead to similar values of the objective function and similar values of the 
main statistics of the data (Onof and Weather, 1993). 
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Figure 2. Comparison between the method of moments and maximum likelihood. Ratio 

Re between the mean relative errors found when estimating each parameter (see 
equation (12)). Re > 1 is obtained when maximum likelihood outperforms the method 

of moments. 
 

It is interesting to analyse how maximum likelihood performs in fitting the 
rainfall data statistics which were selected for estimating the model parameters 
using the method of moments. Since these specific statistics, which in the 
present case are the mean, the proportion of dry hours, the variance and the lag-
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one correlation, are surely best fitted by the method of moments, the 
performances of maximum likelihood in fitting them are a useful benchmark, 
which allows to assess the fitting capability of this latter estimation method with 
respect to the best ones of the method of moments. The obtained mean (over the 
12 seasons) absolute relative errors are reported in Table 3. 

As it was expected, the method of moments performs better in reproducing 
all the considered statistics but the mean, which is astonishingly better 
reproduced by maximum likelihood. The performances of this latter method in 
reproducing the proportion of dry hours were found satisfactory, while the lag-
one correlation and the variance resulted not well reproduced. It is well known 
that to fit the correlation of rainfall data aggregated at fine time span using point 
processes is not an easy task. Thus, the error observed in reproducing the 
variance appears to denote a more severe limitation of maximum likelihood 
estimation than the one observed in the lag-one correlation coefficient. The lack 
of efficiency of maximum likelihood in this respect is currently under 
investigation by analysing longer synthetic rainfall series. 
 

Statistics µ 

Pd  σ2 ρ1 
Μrem 0.6 0.1 8.0 7.7 
Μrel 0.3 1.3 27.3 14.8 
Table 3. Mean (over the 12 seasons) absolute relative errors Μrem and Μrel in fitting 

some first and second-order statistics of the synthetic rainfall data using the method of 
moments and maximum likelihood respectively. 

 
7 CONCLUSIONS 
 

In this paper, an approximate maximum likelihood estimator for seasonal 
rainfall models based on point processes has been considered, based on the 
approach recently proposed by Chandler (1997). Model estimation is performed 
by applying the Whittle’s approximation to the Gaussian maximum likelihood 
function in the spectral domain, which provides asymptotically consistent and 
normally distributed estimates. Seasonality is accounted for by dividing the year 
in period (seasons) and performing the parameter estimation separately for each 
of them. Stationarity of the process in each period is assumed. 

The estimator objective function is minimised here numerically by applying 
a genetic algorithm, which allows to explore the whole parameter space for the 
search of the absolute minimum. 

The estimator was tested by fitting 50 years of synthetic hourly rainfall data, 
generated using a Neyman-Scott model with assigned parameter values. The 
Whittle’s estimator was found to provide quite satisfactory performances. 
However, some lack of accuracy was found in fitting the variance of the data. 
This aspect of the analysis is the subject of on-going work. 
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